Chapter 20 )
Mitigating Spatial Bias in Volunteered e
Geographic Information for Spatial

Modeling and Prediction

Guiming Zhang

Abstract VGI (volunteered geographic information) observations are often
spatially biased, which degrades the quality of inferences drawn from field sample
sets consisting of VGI observations. This chapter presents a novel representativeness-
directed approach to mitigating spatial bias in VGI for spatial modeling and predic-
tion. The approach, based on the Third Law of Geography (the similarity principle),
defines the representativeness of a field sample set as the degree to which the field
sample locations capture the spatial variability of environmental covariates in the
study area. Sample representativeness is then quantified as the overlap between the
probability distribution of covariate values over sample locations and the distribution
over the whole study area. Adjusting the weights for individual sample locations
towards increasing the overlap thus mitigates spatial bias in the sample locations
and improves sample representativeness. Applications of the approach to species
habitat suitability mapping and digital soil mapping demonstrate its effectiveness in
mitigating spatial bias to improve the accuracy of spatial modeling and prediction.
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20.1 Introduction

Volunteered geographic information (VGI) refers to geographic information created
by citizen volunteers (Goodchild, 2007). It has proliferated in recent years as advance-
ments in geospatial and communication technologies enable the general public to
contribute geographic data. With ubiquitous access to the Internet, ordinary citi-
zens can now easily create and share geographic observations of the world, for
example, by sharing geo-referenced photos of species observations in citizen science
communities or on social media through location-aware smartphones. VGI broadly

G. Zhang (X)
Department of Geography & the Environment, University of Denver, Denver 80208, USA
e-mail: guiming.zhang@du.edu

© Higher Education Press 2022 179
B. Li et al. (eds.), New Thinking in GIScience,
https://doi.org/10.1007/978-981-19-3816-0_20


http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-3816-0_20&domain=pdf
mailto:guiming.zhang@du.edu
https://doi.org/10.1007/978-981-19-3816-0_20

180 G. Zhang

encompasses geographic data generated by volunteer participants in citizen science,
crowdsourcing, social media, etc. as they all involve voluntary and non-expert
geographic data creation (Zhang, 2021). VGl is useful in many domains such as emer-
gency response, environmental monitoring, land cover map validation, and biodiver-
sity modeling (Yan et al., 2020). Exemplary VGI projects include OpenStreetMap
(Haklay & Weber, 2008) that compiles an open and free geographic databases for
the world, and iNaturalist (Unger et al., 2020) and eBird (Wood et al., 2011) which
document species observations across the globe on a daily basis. VGI represents a
paradigm shift in how geographic data is created and shared and in its content and
characteristics (Elwood, 2008). In a broader context, VGI is an important source of
geospatial big data (Yang, 2017) which is propelling geographic research towards
emerging paradigms such as “data-driven geography” (Miller & Goodchild, 2014)
and “data-intensive science” (Kelling et al., 2009).

VGI has become a supplementary or even alternative mechanism for acquiring
geographic data due to its unique advantages. First, VGI contains rich local infor-
mation because citizens as local experts and sensors (Goodchild, 2007) have long
been accumulating knowledge of their local environments (Zhang et al., 2018; Zhu
et al., 2015b). Second, VGI makes it feasible to collect geographic data over large
areas given that potential VGI contributors are all over the world. Third, VGI can
provide timely updated data that are difficult to obtain through other means. Lastly,
VGI is much less expensive than traditional spatial data collection protocols (e.g.,
survey). As such, VGI has a great potential to reveal the spatiotemporal dynamics of
geographic phenomena at high spatiotemporal resolutions over large areas.

Such potential can be realized through spatial modeling and prediction based
on VGI observations. Nonetheless, VGI observations still represent only a set of
sample observations regarding the phenomenon under concern, despite its seem-
ingly extensive coverages (Zhang & Zhu, 2018). For instance, occurrence loca-
tions of a bird species reported by volunteers is a sample set from the population
consisting of all possible species occurrence locations. In this respect, VGI obser-
vations are similar to field sample data collected through traditional geographic
sampling. One of the significant differences, though, is that locations for designed
geographic sampling are carefully chosen (e.g., following statistical sampling design)
so that the sampled locations are representative of the spatial variabilities in the study
area (Jensen & Shumway, 2010). In contrast, VGI contributors decide where (and
when) to conduct observations at their own discretion without following a coordi-
nated sampling scheme. This characteristic of voluntary data creation often results
in spatial bias in VGI data, which has profound implications on drawing inferences
about the target phenomenon (i.e., population) from VGI observations (i.e., sample).
This chapter focuses on this issue and presents a novel representativeness-directed
approach to mitigating spatial bias in VGI for spatial modeling and prediction.
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20.2 Spatial Bias in VGI

Data quality of VGI is under constant scrutiny (Goodchild & Li, 2012), and spatial
bias is a prominent concern when using VGI for mapping, modeling, and prediction
(Zhang & Zhu, 2018). VGI observations in spatial distribution tend to concentrate
in certain geographic areas as observations made by volunteers are opportunistic in
nature, which results in spatial bias in sampling. Spatial distribution of the observa-
tion effort can be considered neither random nor regular in the sense of geographic
sampling design, but ‘ad hoc’ (Zhu et al., 2015b). As a result, VGI observations are
often of higher density in specific areas, for example, populous and accessible areas
(Kadmon et al., 2004; Zhang, 2020).

Due to spatial bias, a field sample set consisting of VGI observations may not
be representative of the spatial variabilities of the phenomena in the study area.
Spatial bias, if not appropriately accounted for, would adversely affect the quality of
inferences drawn from VGI observations (Leitdo et al., 2011). Spatial bias is one form
of sample selection bias (Zhang & Zhu, 2018). Many methods rely on information
of the underlying observation process (e.g., selection probabilities) to correct for
sample selection bias, but such information is often unavailable in VGI data.

Here a novel representativeness-directed approach was developed to mitigate
spatial bias in VGI to improve the quality of spatial modeling and prediction (Zhang,
2018; Zhang & Zhu, 2019a, 2019b). Specifically, it is for mitigating spatial bias in
field sample sets to improve the accuracy of predictive mapping, a framework for
predicting the spatial variation of a target variable based on environmental covariate
data and a model capturing the covariation relationship (f) between the target variable
(T) and the covariates (E) (Fig. 20.1).
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Fig. 20.1 Basic idea of representativeness directed spatial bias mitigation. Reused from Zhang and
Zhu (2019b) with permission
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20.3 A Representativeness-Directed Approach to Bias
Mitigation

Spatial bias has adverse effects on spatial modeling and prediction as it impedes
the representativeness of VGI-based field sample sets. In the context of predictive
mapping, sample representativeness essentially is the degree to which the obser-
vations made at sample locations capture the spatial variability of the relationship
between the target variable (e.g., species habitat suitability) and the environmental
covariates (e.g., elevation, land cover, precipitation) in the area. This is achieved by
capturing the variability in the target variable and that in covariates. With covariate
data (raster layers), it is feasible to assess sample representativeness. Sample repre-
sentativeness with respect to the target variable is hard to assess as its spatial variation
is unknown (to be predicted). Nonetheless, according to the Third Law of Geography
(Zhu et al., 2018; Zhu & Turner, 2022), which states that similar values of the target
variable can be expected at locations with similar geographic configurations (e.g.,
environmental conditions), it can be reasonably expected that the representativeness
measured on the covariates would approximate the representativeness on the target
variable because the target variable and the covariates should correlate (Zhu et al.,
2015a). Based on this idea, sample representativeness can be defined and measured
to guide spatial bias mitigation.

20.3.1 Measuring Sample Representativeness

Sample representativeness is defined as the “goodness-of-coverage” of the sample
locations in the covariate space, which in turn is measured as the similarity between
the probability density distribution of the sample locations in the covariates space
(i.e., sample distribution Q) and the probability density distribution of all spatial units
(e.g., raster cells) in the area (i.e., population distribution P) (Fig. 20.1). Stronger
spatial bias in the sample locations would lead to poorer sample representativeness.

Sample representativeness is computed as the similarity between the sample
and population distributions over the covariate space (Zhang & Zhu, 2019b).
Kernel density estimation was used to estimate probability density distributions
for computing sample representativeness. First, sample and population distributions
with respect to individual covariate were estimated as per Egs. (20.1) and (20.2),
respectively.

n 1 _ Vi
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In the above equations, K(-) is the Gaussian kernel function, » is the number of
sample locations and m is the number of locations (cells) in the study area. Q; and P,
are the estimated sample and population distributions on covariate / (denoted as v;),
respectively. V; is the value of v; at sample location i and w; is a normalized sample
weight (Z;’:] w; = 1) associated with location i. Vj; is the value of v; at cell j in
the study area. h;p and h;p are kernel bandwidths. Second, the similarity between
Q; and P; (S;) was computed as the overlapping area between the two distributions
(Eq. 20.3) (Zhu, 1999):

2XAanAPI

S =
AQI + AP[

(20.3)

where A, and A p, are the areas under the sample and population distribution curves,
respectively and A g, N A p, is the overlapping area (Fig. 20.2). S; reflects the goodness-
of-coverage of the sample regarding this covariate. Finally, sample representativeness
was computed as the overall similarity between the sample and population distribu-
tions with respect to all covariates. It is a weighted average of the similarities with
respect to individual covariates (Eq. 20.4):

R = Z (20.4)
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Fig. 20.2 An illustration of the effects of representativeness-directed spatial bias mitigation.
Reused from Zhang and Zhu (2019b) with permission
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where R is sample representativeness with a larger value indicating higher sample
representativeness, and A; the weight associated with covariate i indicating covariate
importance in measuring sample representativeness.

20.3.2 Representativeness-Directed Bias Mitigation

Spatial bias in field sample sets can then be mitigated by improving sample repre-
sentativeness. Weights of the sample locations (Eq. 20.2) affect the estimated sample
distributions and hence sample representativeness. Therefore, improving sample
representativeness is achieved by adjusting the sample distribution towards increasing
its similarity to the population distribution through weighting sample locations
(Zhang & Zhu, 2019b). That is, sample locations in under-represented areas would
receive larger weights and be treated as more important in training models. Weighting
the sample locations in this way is expected to mitigate spatial bias and improve
sample representativeness. The key is to determine the optimal weights. This can
be conceived as an optimization problem, where the goal is to find a set of optimal
weights associated with the sample locations that maximizes sample representative-
ness. A Genetic Algorithm was adopted to search for the optimal weights using
sample representativeness as the objective function.

The weighted sample locations were used to train models to establish the relation-
ships between the target variable and the covariates. Weights can be incorporated in
the model training process by weighting the error term associated with each sample
location (e.g., training a regression model using weighted ordinary least square)
(Zhang & Zhu, 2019a, 2019b). The trained models can be applied to the covariate
data layers (cell-by-cell) to predict spatial variation of the target variable.

20.4 Applications

The representativeness-directed approach to spatial bias mitigation was evaluated
through case studies in two application domains: species habitat suitability mapping,
and digital soil mapping.

Occurrence locations of the red-tailed hawk (Buteo jamaicensis) obtained from
eBird were used to model and predict the species habitat suitability in Wisconsin,
United States. The approach was applied to determine weights for species occur-
rence locations (Fig. 20.3) to train a habitat suitability model with logistic regres-
sion. Validation shows that the accuracy of predicted suitability map (Fig. 20.4)
improved with weighted occurrence locations. Additionally, a positive relationship
between sample representativeness and prediction accuracy was observed (Fig. 20.5),
suggesting that sample representativeness is a valid indicator of suitability prediction
accuracy (Zhang & Zhu, 2019b).
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Fig. 20.3 Optimal weights determined through the representativeness-directed approach for all
eBird observation locations (left) and for the red-tailed hawk occurrence locations (right). Reused
from Zhang and Zhu (2019b) with permission
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Fig. 20.4 Predicted habitat suitability maps based on unweighted species occurrence locations
(left) and weighted occurrence locations (right). Higher AUC (area under the receiver operating
characteristic curve) indicates higher prediction accuracy. Reused from Zhang and Zhu (2019b)
with permission

The representativeness-directed approach was also applied to mitigate spatial bias
in existing soil samples for digital soil mapping in Heshan study area, northeastern
China. Existing soil samples in the study area were pooled from various sources and
subject to spatial bias. Quantitative evaluations show that weighting soil samples
using the weights determined from the approach (Fig. 20.6) improved A-horizon
soil organic matter content prediction accuracy with either the iPSM method (Zhu
etal.,2015a) or multiple linear regression (Fig. 20.7). A positive relationship between
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Fig. 20.5 The relationship between sample representativeness and prediction accuracy over the
generations of the genetic algorithm. Reused from Zhang and Zhu (2019b) with permission

Fig. 20.6 Weights of the
soil samples determined
through the
representativeness-directed
approach. Reused from
Zhang and Zhu (2019a) with
permission
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sample representativeness and prediction accuracy was again observed (Fig. 20.8).
Moreover, the weights were informative of individual sample importance and thus
can be used as guidance to filter soil samples to improve soil prediction accuracy

(Zhang & Zhu, 2019a).
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Fig. 20.7 A-horizon soil organic matter content predicted with iPSM (top row) and multiple linear
regression (bottom row) based on unweighted soil samples (left column) and weighted soil samples
(right column). Lower RMSE (root mean squared error) indicates higher prediction accuracy. Reused
from Zhang and Zhu (2019a) with permission

20.5 Outlook on Future Research

Beyond the two application case studies, the idea of the representativeness-directed
approach should apply to sample selection bias mitigation in general for spatial
modeling and prediction. Specifically, beyond its applicability to global modeling
methods, the approach can be extended to train localized models (e.g., modeling
based on sample locations within a neighborhood of the prediction location) that
account for spatial non-stationarity. It would also be interesting to examine the
applicability of the approach for classification problems (e.g., soil class prediction)
in addition to regression tasks explored. Lastly, spatial bias in a field sample set
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Fig. 20.8 Relationship between sample representativeness and prediction accuracy (measured by
root mean squared error—RMSE, mean absolute error—MAE, mean error—ME, and explained
variance score—EVS) over the generations of the genetic algorithm. Reused from Zhang and Zhu
(2019a) with permission

may not be mitigated completely. It is thus worth exploring how to utilize informa-
tion on sample representativeness to quantify modeling and prediction uncertainties,
preferably in a spatially explicit manner.

At the core of the approach is defining and measuring sample representativeness
in the covariate space. The idea can be translated to the social space. For example, it
may be used to quantify demographic and socio-economic biases embedded within
social media users to inform to what extent inferences drawn from social media
data truly reflect the status of the population at large. In a broader sense, big data
often suffers from biases. The concept of defining and quantifying representativeness
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offers a novel perspective on how to appropriately deal with biases in big data so that
more accurate insights can be gained from them.
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